АВТОМОБИЛЬ ЛЕГКОВОЙ: ПРОИЗВОДСТВО - К КОНЕЧНАЯ СТАДИЯ СБОРКИ - определение. Что такое АВТОМОБИЛЬ ЛЕГКОВОЙ: ПРОИЗВОДСТВО - К КОНЕЧНАЯ СТАДИЯ СБОРКИ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое АВТОМОБИЛЬ ЛЕГКОВОЙ: ПРОИЗВОДСТВО - К КОНЕЧНАЯ СТАДИЯ СБОРКИ - определение

Стадия Карнеги
Найдено результатов: 1532
АВТОМОБИЛЬ ЛЕГКОВОЙ: ПРОИЗВОДСТВО - К. КОНЕЧНАЯ СТАДИЯ СБОРКИ      
К статье АВТОМОБИЛЬ ЛЕГКОВОЙ: АВТОМОБИЛЬНОЕ ПРОИЗВОДСТВО
После соединения полностью собранного шасси с частично укомплектованным кузовом начинается конечная стадия сборки. Испытание на герметичность проводится поливом автомобиля высоконапорными струями воды. Далее устанавливаются колеса, сиденья, аккумуляторная батарея, бамперы, другие функциональные и декоративные части, производится обивка салона. Полностью укомплектованный автомобиль своим ходом заводится на посты для регулировки света фар, установки углов схождения и развала передних колес, регулировки тормозов, проверки ходовых характеристик на динамометрических роликах. Испытание на роликах, когда только вращаются колеса, а автомобиль остается неподвижным, позволяет проверить двигатель и силовую передачу во всем диапазоне рабочих параметров. Окончательная проверка включает все выполненные ранее проверки отдельных узлов после их производства. Изготовленные автомобили перегоняются на стоянку для последующей погрузки в специальные трейлеры или железнодорожные вагоны, которыми они доставляются в торговую сеть.
ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЕ ПРОИЗВОДСТВО         
  • Производство продукции прямого восстановления железа в мире, тонн; доля процесса [[Midrex]] в общем объёме, %; доля технологий металлизации с использованием угля, %; доля технология HYL III, %; прочие технологии, %
производство стали в электрических (главным образом дуговых) печах. Позволяет получать стали широкого сортамента (от рядовых до высококачественных) при массе плавки от нескольких десятков килограмм до 200 т и выше. Электросталеплавильное производство в дуговых печах делится: по химическому составу огнеупорной футеровки печей и применяемого шлака - на основное и кислое; по шлаковому режиму (по числу наводимых шлаков) - на одношлаковое и двухшлаковое; по характеру процесса - на переплав, имеющий главной целью расплавление металла и ограниченное его рафинирование, и плавку с полным окислением, сопровождающимся дефосфорацией и кипением жидкой стали, в ходе которого из нее удаляются газы и другие нежелательные примеси. Электросталеплавильное производство имеет существенные преимущества перед другими способами получения стали, и его удельный вес в мировом производстве стали непрерывно возрастает.
СТАЛЕПЛАВИЛЬНОЕ ПРОИЗВОДСТВО         
  • Производство продукции прямого восстановления железа в мире, тонн; доля процесса [[Midrex]] в общем объёме, %; доля технологий металлизации с использованием угля, %; доля технология HYL III, %; прочие технологии, %
получение стали из чугуна и стального лома в сталеплавильных агрегатах металлургических заводов. Основные виды сталеплавильного производства: кислородно-конвертерное, электросталеплавильное и мартеновское. Сталеплавильное производство - 2-е основное звено в общем производственном цикле черной металлургии (наряду с доменным и прокатным производствами).
Электросталеплавильное производство         
  • Производство продукции прямого восстановления железа в мире, тонн; доля процесса [[Midrex]] в общем объёме, %; доля технологий металлизации с использованием угля, %; доля технология HYL III, %; прочие технологии, %

получение стали в электрических печах (См. Электрическая печь) металлургических или машиностроительных заводов. Электросталь, предназначенная для дальнейшего передела, выплавляется главным образом в дуговых печах с основной футеровкой. Существует несколько разновидностей электроплавки в дуговых печах (См. Дуговая печь); с полным окислением примесей; переплав легированных отходов без окисления н с применением газообразного кислорода; метод смешения; плавка на жидком полупродукте (Дуплекс-процесс) и др.

Технология плавки с полным окислением примесей включает 3 периода - расплавление, окислительный и восстановительный. В окислительный период плавки присадкой твёрдых окислителей (железные руды, агломерата и др.) или вдуванием газообразного кислорода окисляют примеси стальной ванны (Р, Si и др.). Активное кипение металла, вызванное выделением пузырьков окиси углерода в результате реакции обезуглероживания, способствует быстрому нагреву ванны, дегазации стали (См. Дегазация стали), удалению неметаллических включений (См. Неметаллические включения). В восстановительный период плавки удаляют серу, сталь раскисляют (см. Раскисление металлов) и с помощью ферросплавов (См. Ферросплавы) корректируют её состав по легирующим элементам (См. Легирующие элементы). Переплав легированных отходов без окисления позволяет сохранить ценные легкоокисляющиеся легирующие элементы (Cr и др.), что существенно улучшает технологические показатели производства. При переплаве высокохромистых отходов с применением газообразного кислорода горячий ход процесса (1800-1900 °С) обеспечивает низкое содержание углерода в металле (чего нельзя достичь при переплаве без окисления) без заметных потерь хрома. Широкое распространение получили внепечные методы обезуглероживания высоколегированных сталей (коррозионностойких и др.) продувкой металла аргоно-азото-парокислородными смесями в специальных рафинировочных агрегатах конвертерного типа или окислительным вакуумированием.

Пути интенсификации электроплавки: сокращение периода расплавления (увеличением удельной мощности трансформаторов, использованием газокислородных горелок, предварит, подогревом шихты), применение кислорода, продувка жидкого металла порошкообразными шлакообразующими материалами, переход на одношлаковый процесс, сокращение восстановительного периода путём применения средств внепечного рафинирования (вакуумная обработка, продувка металла аргоном, обработка стали синтетическими шлаками).

Дуговые печи с кислой футеровкой применяются главным образом для получения стали, предназначенной для фасонного литья. Большое сопротивление кислых шлаков (насыщенных SiО2) позволяет быстрее нагреть металл до высокой температуры, что важно для литья тонкостенных изделий. Существенный недостаток кислой плавки - невозможность удаления фосфора и серы из стали.

О плавке стали в индукционной печи (См. Индукционная печь) и методах специальной электрометаллургии, а также о месте и роли Э. п. среди других процессов выплавки стали см. в статьях Сталеплавильное производство, Электрометаллургия.

Лит.: см. при ст. Электрометаллургия.

В. А. Григорян.

Сталеплавильное производство         
  • Производство продукции прямого восстановления железа в мире, тонн; доля процесса [[Midrex]] в общем объёме, %; доля технологий металлизации с использованием угля, %; доля технология HYL III, %; прочие технологии, %
Сталеплави́льное произво́дство — это получение стали из сырья, чугуна или стального лома в сталеплавильных агрегатах металлургических заводов. Сталеплавильное производство является вторым звеном в общем производственном цикле чёрной металлургии.
Сталеплавильное производство         
  • Производство продукции прямого восстановления железа в мире, тонн; доля процесса [[Midrex]] в общем объёме, %; доля технологий металлизации с использованием угля, %; доля технология HYL III, %; прочие технологии, %

производство стали из чугуна и стального лома в сталеплавильных агрегатах металлургических заводов. С. п. - второе звено в общем производственном цикле чёрной металлургии (См. Чёрная металлургия); другие главные звенья - получение чугуна в доменных печах (см. Доменное производство) и прокатка стальных слитков или заготовок (см. Прокатное производство). С. п. включает 2 основных технологических процесса - выплавку и разливку стали.

В современной металлургии (См. Металлургия) важнейшие способы выплавки стали - Кислородно-конвертерный процесс (см. также Конвертерное производство), мартеновский процесс (см. Мартеновское производство) и электросталеплавильный процесс (см. Электросталеплавильное производство.) Соотношение между этими видами С. п. меняется: если в начале 50-х гг. 20 в. в мартеновских печах выплавлялось около 80\% производимой в мире стали, то уже к середине 70-х гг. главенствующее положение занял кислородно-конвертерный процесс, на долю которого приходится более половины мировой выплавки стали.

Полученную в сталеплавильном агрегате сталь выпускают в разливочный ковш, а затем либо разливают в металлические формы - изложницы (См. Изложница), либо направляют на установки непрерывной разливки стали (См. Непрерывная разливка стали) (машины непрерывного литья); лишь около 2\% всей производимой стали идёт на фасонное литьё. В результате затвердевания металла получаются стальные слитки или заготовки, которые в дальнейшем подвергают обработке давлением (прокатке, ковке). Непрерывный способ разливки стали имеет неоспоримые преимущества перед разливкой в изложницы. Однако пока преобладающее количество металла разливается в изложницы. Разливка стали - ответственный этап С. п. Технология и организация разливки в значительной мере определяют качество готового металла и количество отходов при последующем переделе стальных слитков.

В кислородно-конвертерном производстве преобладают конвертеры ёмкостью 100-350 т. Сортамент стали, получаемой этим способом, непрерывно расширяется, причём по качеству кислородно-конвертерная легированная сталь не уступает мартеновской стали и электростали соответствующих марок. Выплавка некоторых низколегированных сталей в кислородных конвертерах считается наиболее целесообразной не только по экономическим причинам, но и с точки зрения качества металла. Так, сталь, предназначенную для холодной деформации (особенно для производства автолиста), на металлургических заводах всего мира выплавляют главным образом в кислородных конвертерах. Осваивается выплавка высоколегированной стали. Главные направления развития кислородно-конвертерного процесса: интенсификация плавки (в первую очередь продувки), повышение стойкости футеровки, применение современных средств контроля и управления с использованием ЭВМ, разработка новых технологических вариантов. Большие перспективы открывает перед кислородно-конвертерным процессом сочетание его с методами внепечного рафинирования (См. Рафинирование) металла.

Несмотря на резкое сокращение доли мартеновского металла в общем объёме производства стали, роль мартеновского процесса в чёрной металлургии многих стран ещё достаточно высока. Использование кислорода, природного газа, огнеупоров высокого качества позволяет значительно интенсифицировать мартеновский процесс. Вместе с тем строительство новых мартеновских печей повсеместно прекращено. Перспективной считается перестройка действующих мартеновских печей на высокопроизводительные двухванные печи (См. Двухванная печь).

Во 2-й половине 20 в. наблюдается заметное развитие электросталеплавильного производства, обусловленное рядом его преимуществ перед др. способами получения стали. В СССР действуют 200-т дуговые печи (См. Дуговая печь); проектируются печи номинальной ёмкостью 400 т. В США находится в эксплуатации самая крупная в мире 360-т электропечь (1975). Ведутся работы по созданию 500-600-т электропечей (с шестью электродами). Важная тенденция электросталеплавильного производства - значительное увеличение удельной мощности электропечей (с 250-300 до 500-600 ква/т и более). На металлургических предприятиях некоторых стран внедрён предварительный подогрев шихты, позволяющий сократить продолжительность плавки, снизить расход электроэнергии и электродов. Технико-экономические показатели современных дуговых печей свидетельствуют о целесообразности их использования для выплавки не только легированной, но и рядовой стали. Так, в электросталеплавильных цехах США доля рядового металла достигает 70\%, в ФРГ - 50\%. Положительное влияние на развитие электрометаллургии стали окажет широкое промышленное освоение способов прямого получения железа (См. Прямое получение железа), позволяющих производить высококачественное сырьё для электропечей. Использование металлизованной шихты для электроплавки (например, металлизованных окатышей (См. Окатыши)) позволит сократить капитальные вложения на сооружение новых электросталеплавильных цехов и повысить производительность дуговых печей.

Одно из перспективных направлений развития С. п. - повышение качества стали путём внепечного рафинирования. Наибольшее промышленное значение имеют следующие методы: продувка металла в ковше или специальном агрегате инертными газами или окислительными смесями; вакуумная обработка стали (см. Дегазация стали); обработка стали синтетическими шлаками.

Примерно в середине 60-х гг. начала интенсивно развиваться т. н. спецэлектрометаллургия, которая включает различные виды рафинирующих переплавов заготовки, полученной в обычных сталеплавильных агрегатах (чаще всего в дуговых или индукционных печах). К ним относятся плавка в дуговых вакуумных печах (См. Дуговая вакуумная печь) и в индукционных вакуумных печах, Электрошлаковый переплав, Электроннолучевая плавка, плазменная плавка (см. Плазменная металлургия). В результате рафинирующего переплава исходный металл эффективно очищается от неметаллических включений и др. нежелательных примесей, повышаются плотность и однородность его структуры, улучшаются многие свойства стали.

В области разливки стали наблюдается постоянное увеличение доли непрерывно-литого металла. В середине 70-х гг. в мире работает свыше 500 машин непрерывного литья (МНЛ) стали. Крупнейшая в мире МНЛ, производительностью 1,9 млн. т стали в год, действует в США (1975). Наиболее широкое распространение получают МНЛ радиального типа. Выход готового продукта на лучших МНЛ мира достигает 96-99\%. Как при непрерывном литье, так и при разливке стали в изложницы высокие технико-экономические результаты даёт замена стопорных устройств бесстопорными (шиберными) затворами - надёжными и безопасными в работе, позволяющими точно регулировать скорость разливки металла. Применение экзотермических шлакообразующих смесей позволяет улучшить поверхность получаемых слитков. Благодаря использованию теплоизолирующих и экзотермических прибыльных надставок (См. Прибыльная надставка) удаётся значительно сократить потери металла.

К тенденциям С. п., как и чёрной металлургии в целом, следует отнести дальнейшую концентрацию производства, повышение степени непрерывности всего технологического цикла, специализацию отдельных цехов и предприятий, что создаёт благоприятные условия для снижения себестоимости и повышения качества стали, для достижения высокой степени механизации и автоматизации всего металлургического процесса, внедрения электронно-вычислительных машин и автоматизированных систем управления. Большое значение для развития С. п. имеют ведущиеся в ряде стран работы по созданию непрерывного сталеплавильного процесса и агрегата длящего проведения (см. Сталеплавильный агрегат непрерывного действия).

Мировое производство стали в 1974 превысило 700 млн. т, причём 136 млн. т было выплавлено в СССР. В промышленно развитых странах на душу населения приходится 400-600 кг стали (в СССР более 500 кг). По некоторым прогнозам, к 2000 мировое производство важнейшего металла современности может достичь 2 млрд. т.

Лит.: Сталеплавильное производство. Справочник, под ред. А. М. Самарина, т. 1-2, М., 1964; Явойский В. И., Теория процессов производства стали, 2 изд., М., 1967; Лемпицкий В. В., Голиков И. Н., Склокин Н. Ф., Прогрессивные способы повышения качества стали, М., 1968; Перспективы развития технологии черной металлургии, М., 1973; Электрометаллургия стали и ферросплавов, М., 1974; Калинников Е. С., Черная металлургия: реальность и тенденции, М., 1975; Баптизманский В. И., Теория кислородно-конверторного процесса, М., 1975.

С. И. Венецкий.

Автомобиль года в Японии         
  • 1980 Mazda Familia
  • Honda Accord
  • 1989 Toyota Celsior
  • 1992 Nissan March
  • 1994 Mitsubishi FTO
  • 1996 Mitsubishi Galant
  • Honda Legend
  • 2006 Mazda Roadster
  • 2007 Honda Fit
  • 2010 Toyota Prius
  • 2011 Honda CR-Z
  • 2013 Volkswagen Golf
  • 2011 Nissan Leaf
  • 2018 Volvo XC40
  • 2017 Volvo XC60
  • 2019 Toyota RAV4
  • 2022 Nissan Sakura
  • 2007 Lexus LS460
  • 1994 Honda Accord
  • Mitsubishi Diamante
  • Honda Civic
  • Honda Accord
  • Honda Civic
  • Honda Civic
  • Honda Civic
  • Honda Fit
  • Mazda Capella
  • 2013 Mazda CX-5
  • 2015 Mazda Demio
  • 2015 Mazda Roadster
  • Mitsubishi Galant
  • Nissan Pulsar
  • Nissan Silvia
  • 2021 Nissan Note
  • 2020 Subaru Levorg
  • 2016 Subaru Impreza
  • Subaru Legacy
  • Toyota Prius
  • Toyota Altezza
  • Toyota MR2
  • Toyota Vitz
  • 2008 Toyota iQ
  • Toyota Soarer
Автомобиль года в Японии или Японский автомобиль года от — ежегодная премия, которая с 1980 года вручается лучшему легковому автомобилю вновь представленному на рынке Японии в период с 1 ноября предыдущего по 31 октября текущего года. Помимо главной, в разные годы вручались различные дополнительные премии.
Полицейский автомобиль         
  • Полицейский Шевроле 1955 года.
  • Шевроле Тахо, без опознавательных знаков
  • Полицейский Ford, [[Англия]]
  • Фургон с оборудованием для автоматического замера скорости, Дания
  • Полицейский автомобиль [[Ford Focus]],<br />[[Санкт-Петербург]], [[Россия]]
  • Полицейский [[Ford Crown Victoria]] с включенными специальными огнями
  • Экспериментальная машина полиции на базе Lamborghini , Англия
  • Машина SWAT, модифицированный грузовик МТ45.
  • [[Полицейская машина]] малых габаритов для проверки соблюдения правил парковки
ТРАНСПОРТНОЕ СРЕДСТВО, ИСПОЛЬЗУЕМОЕ ПОЛИЦИЕЙ В ЦЕЛЯХ ЭФФЕКТИВНОГО ОСУЩЕСТВЛЕНИЯ СВОИХ ОБЯЗАННОСТЕЙ
Милицейский автомобиль; Милицейская машина; Полицейская машина; Автомобиль полиции
Полицейский автомобиль (также милицейский автомобиль) — транспортное средство, используемое полицией в целях эффективного осуществления своих обязанностей по патрулированию улиц, площадей, парков, скверов, вокзалов, транспортных магистралей и других общественных мест, а также оперативного реагирования на происшествия (инциденты). Полицейский автомобиль используется для быстрого достижения мест, где произошла авария или инцидент.
К (кириллица)         
  • 10px
БУКВА КИРИЛЛИЦЫ
К (буква); Буква К; K (кириллица)
К, к (название: ка) — буква всех славянских кириллических алфавитов (11-я в болгарском, 12-я в русском, белорусском и сербском, 13-я в македонском и 15-я в украинском); используется также в алфавитах некоторых неславянских языков, где на её основе были даже построены многочисленные новые буквы, наподобие Ҡ, Қ, Ӄ, Ҟ или Ҝ. В старо- и церковнославянской азбуках называется «ка́ко» (ст.
Автомобиль особо большой грузоподъёмности         
Автомоби́ль осо́бо большо́й грузоподъе́мности — автомобиль, автопоезд или другое автотранспортное средство, нагрузки на ось которого превышают 100 кН (10 тс), а ширина — более 2,5 м.

Википедия

Стадии Карнеги

Стадии Карнеги — это принятая в эмбриологии и биологии развития стандартизованная система классификации хронологических стадий развития эмбрионов хордовых животных, в том числе человека. Система стадирования по Карнеги достаточно универсальна и единообразна для того, чтобы сделать возможным сопоставление стадий развития эмбрионов не только разных видов, например, млекопитающих, но видов, стоящих на разных ступенях эволюционной лестницы хордовых. Она состоит из 23-х стадий.

В системе стадирования эмбрионов по Карнеги, те или иные стадии эмбрионального развития определяются по наличию у эмбриона, находящегося на данной стадии, тех или иных анатомических структур, а не по размеру эмбриона, количеству сомитов у него или количеству дней от момента зачатия. Поэтому точная хронология (количество дней между стадиями по Карнеги, или день, на который начинается, и день, на который заканчивается та или иная конкретная стадия), а также размеры эмбриона и количество сомитов у эмбриона на той или иной стадии, различны у эмбрионов разных видов хордовых. Различия эти тем сильнее, чем больше эволюционное расстояние между видами. В некоторых довольно узких пределах хронология тех или иных стадий, размер эмбриона или количество сомитов на этой стадии может варьироваться и у разных эмбрионов одного и того же вида. У эмбрионов человека классификация стадий эмбрионального развития по Карнеги описывает только первые 60 дней (первые 2 месяца, или 8 недель) развития эмбриона. После этого срока вместо термина эмбрион принято использовать термин плод.

Выделение стадий эмбрионального развития по Карнеги основывается на работах Стритера от 1942 года и работах О’Рейли и Мюллера от 1987 года. Название «стадии Карнеги» или «стадии по Карнеги» происходит от названия Института Карнеги в Вашингтоне, научного учреждения, где эта система классификации была разработана.

Система стадирования эмбрионального развития по Карнеги предоставляет удобную единую, универсальную классификацию стадий развития эмбрионов хордовых животных, пригодную для большинства изученных видов. Тем не менее, для более точного учёта специфических особенностей эмбрионального развития у конкретных видов хордовых животных, а также для обеспечения возможности подразделения процесса эмбрионального развития на более мелкие стадии, для многих широко применяемых модельных организмов в эмбриологии и биологии развития изобретены специальные системы стадирования, предназначенные только для эмбрионов этого вида. Такова, например, система стадий Гамбургера-Гамильтона для эмбрионов курицы.

Что такое АВТОМОБИЛЬ ЛЕГКОВОЙ: ПРОИЗВОДСТВО - К. КОНЕЧНАЯ СТАДИЯ СБОРКИ - определение